Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.990
Filtrar
1.
Sci Rep ; 13(1): 13716, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37607956

RESUMO

The enhanced availability of functional fibroblasts from precious tissue samples requires an ideal cell-culture system. Therefore, this study was designed to investigate the performance of caprine adult fibroblast cells (cadFibroblast) when cultivated in different culture media. The cadFibroblast cell lines from adult Barbari (Capra hircus) bucks were established and the effect of different media viz. DMEM/F-12 [with low-glucose (5.5 mM; DL) and high-glucose (30 mM; DH)], α-MEM [with low-glucose (5.5 mM; ML) and with high-glucose (30 mM; MH)], and fibroblast growth medium (FGM) were evaluated. Cells were then compared for growth characteristics and in-vitro dynamics through cellular morphology, proliferation, population-doubling time, double-immunocytochemistry, colony-forming units, wound healing, transwell migration, and differential expression of fibroblast-specific markers (FSP-1 and vimentin). The results of immunocytochemistry, transwell migration/invasion, and wound healing assays showed the superiority of DH over DL and other media tested. Whereas, similar effects of glucose supplementation and expression of FSP-1 were not observed in α-MEM. Transwell migration was significantly (p < 0.05) lower in FGM compared with other media tested. Overall, our results illustrate the media-dependent deviation in in-vitro dynamics and culture characteristics of cadFibroblasts that may be useful to develop strategies to cultivate these cells efficiently for research and downstream applications.


Assuntos
Meios de Cultura , Derme , Fibroblastos , Cabras , Técnicas de Cultura de Células , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/microbiologia , Meios de Cultura/química , Meios de Cultura/farmacologia , Técnicas In Vitro , Derme/citologia , Animais , Linhagem Celular , Masculino , Glucose/metabolismo , Perfilação da Expressão Gênica , Cicatrização , Ensaios de Migração Celular , Biomarcadores
2.
Biomolecules ; 13(6)2023 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-37371558

RESUMO

Over several decades, excess glucocorticoids (GCs) of endogenous or exogenous origin have been recognized to significantly inhibit collagen synthesis and accelerate skin aging. However, little is known regarding their molecular mechanisms. We hypothesized that the action of GCs on collagen production is at least partially through the glucocorticoid receptor (GR) and its target genes, and therefore aimed to identify GR target genes that potentially inhibit collagen synthesis in Hs68 human dermal fibroblasts. We first confirmed that dexamethasone, a synthetic GC, induced canonical GR signaling in dermal fibroblasts. We then collected 108 candidates for GR target genes reported in previous studies on GR target genes and verified that 17 genes were transcriptionally upregulated in dexamethasone-treated dermal fibroblasts. Subsequently, by individual knockdown of the 17 genes, we identified that six genes, AT-rich interaction domain 5B, FK506 binding protein 5, lysyl oxidase, methylenetetrahydrofolate dehydrogenase (NADP + dependent) 2, zinc finger protein 36, and zinc fingers and homeoboxes 3, are potentially involved in GC-mediated inhibition of collagen synthesis. The present study sheds light on the molecular mechanisms of GC-mediated skin aging and provides a basis for further research on the biological characteristics of individual GR target genes.


Assuntos
Colágeno , Derme , Fibroblastos , Glucocorticoides , Receptores de Glucocorticoides , Humanos , Colágeno/biossíntese , Derme/citologia , Derme/efeitos dos fármacos , Derme/metabolismo , Dexametasona/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Glucocorticoides/farmacologia , Receptores de Glucocorticoides/efeitos dos fármacos , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo
3.
Cells ; 11(24)2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36552830

RESUMO

Alopecia is a common medical condition affecting both sexes. Dermal papilla (DP) cells are the primary source of hair regeneration in alopecia patients. Therapeutic applications of extracellular vesicles (EVs) are restricted by low yields, high costs, and their time-consuming collection process. Thus, engineered nanovesicles (eNVs) have emerged as suitable therapeutic biomaterials in translational medicine. We isolated eNVs by the serial extrusion of fibroblasts (FBs) using polycarbonate membrane filters and serial and ultracentrifugation. We studied the internalization, proliferation, and migration of human DP cells in the presence and absence of FB-eNVs. The therapeutic potential of FB-eNVs was studied on ex vivo organ cultures of human hair follicles (HFs) from three human participants. FB-eNVs (2.5, 5, 7.5, and 10 µg/mL) significantly enhanced DP cell proliferation, with the maximum effect observed at 7.5 µg/mL. FB-eNVs (5 and 10 µg/mL) significantly enhanced the migration of DP cells at 36 h. Western blotting results suggested that FB-eNVs contain vascular endothelial growth factor (VEGF)-a. FB-eNV treatment increased the levels of PCNA, pAKT, pERK, and VEGF-receptor-2 (VEGFR2) in DP cells. Moreover, FB-eNVs increased the human HF shaft size in a short duration ex vivo. Altogether, FB-eNVs are promising therapeutic candidates for alopecia.


Assuntos
Folículo Piloso , Feminino , Humanos , Masculino , Alopecia/terapia , Alopecia/metabolismo , Células Cultivadas , Derme/citologia , Fibroblastos , Folículo Piloso/crescimento & desenvolvimento , Fator A de Crescimento do Endotélio Vascular/metabolismo , Nanopartículas , Vesículas Extracelulares
4.
Stem Cell Res Ther ; 13(1): 455, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064604

RESUMO

BACKGROUND: While rapid healing of diabetic foot ulcers (DFUs) is highly desirable to avoid infections, amputations and life-threatening complications, DFUs often respond poorly to standard treatment. GMP-manufactured skin-derived ABCB5+ mesenchymal stem cells (MSCs) might provide a new adjunctive DFU treatment, based on their remarkable skin wound homing and engraftment potential, their ability to adaptively respond to inflammatory signals, and their wound healing-promoting efficacy in mouse wound models and human chronic venous ulcers. METHODS: The angiogenic potential of ABCB5+ MSCs was characterized with respect to angiogenic factor expression at the mRNA and protein level, in vitro endothelial trans-differentiation and tube formation potential, and perfusion-restoring capacity in a mouse hindlimb ischemia model. Finally, the efficacy and safety of ABCB5+ MSCs for topical adjunctive treatment of chronic, standard therapy-refractory, neuropathic plantar DFUs were assessed in an open-label single-arm clinical trial. RESULTS: Hypoxic incubation of ABCB5+ MSCs led to posttranslational stabilization of the hypoxia-inducible transcription factor 1α (HIF-1α) and upregulation of HIF-1α mRNA levels. HIF-1α pathway activation was accompanied by upregulation of vascular endothelial growth factor (VEGF) transcription and increase in VEGF protein secretion. Upon culture in growth factor-supplemented medium, ABCB5+ MSCs expressed the endothelial-lineage marker CD31, and after seeding on gel matrix, ABCB5+ MSCs demonstrated formation of capillary-like structures comparable with human umbilical vein endothelial cells. Intramuscularly injected ABCB5+ MSCs to mice with surgically induced hindlimb ischemia accelerated perfusion recovery as measured by laser Doppler blood perfusion imaging and enhanced capillary proliferation and vascularization in the ischemic muscles. Adjunctive topical application of ABCB5+ MSCs onto therapy-refractory DFUs elicited median wound surface area reductions from baseline of 59% (full analysis set, n = 23), 64% (per-protocol set, n = 20) and 67% (subgroup of responders, n = 17) at week 12, while no treatment-related adverse events were observed. CONCLUSIONS: The present observations identify GMP-manufactured ABCB5+ dermal MSCs as a potential, safe candidate for adjunctive therapy of otherwise incurable DFUs and justify the conduct of a larger, randomized controlled trial to validate the clinical efficacy. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03267784, Registered 30 August 2017, https://clinicaltrials.gov/ct2/show/NCT03267784.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP , Pé Diabético , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Neovascularização Fisiológica , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Animais , Derme/citologia , Derme/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Pé Diabético/genética , Pé Diabético/metabolismo , Pé Diabético/patologia , Pé Diabético/terapia , Humanos , Isquemia/metabolismo , Isquemia/terapia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Fisiológica/fisiologia , RNA Mensageiro/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Cicatrização/genética , Cicatrização/fisiologia
5.
Nature ; 606(7912): 188-196, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35585237

RESUMO

Proper ectodermal patterning during human development requires previously identified transcription factors such as GATA3 and p63, as well as positional signalling from regional mesoderm1-6. However, the mechanism by which ectoderm and mesoderm factors act to stably pattern gene expression and lineage commitment remains unclear. Here we identify the protein Gibbin, encoded by the Xia-Gibbs AT-hook DNA-binding-motif-containing 1 (AHDC1) disease gene7-9, as a key regulator of early epithelial morphogenesis. We find that enhancer- or promoter-bound Gibbin interacts with dozens of sequence-specific zinc-finger transcription factors and methyl-CpG-binding proteins to regulate the expression of mesoderm genes. The loss of Gibbin causes an increase in DNA methylation at GATA3-dependent mesodermal genes, resulting in a loss of signalling between developing dermal and epidermal cell types. Notably, Gibbin-mutant human embryonic stem-cell-derived skin organoids lack dermal maturation, resulting in p63-expressing basal cells that possess defective keratinocyte stratification. In vivo chimeric CRISPR mouse mutants reveal a spectrum of Gibbin-dependent developmental patterning defects affecting craniofacial structure, abdominal wall closure and epidermal stratification that mirror patient phenotypes. Our results indicate that the patterning phenotypes seen in Xia-Gibbs and related syndromes derive from abnormal mesoderm maturation as a result of gene-specific DNA methylation decisions.


Assuntos
Proteínas de Ligação a DNA , Epitélio , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma , Morfogênese , Animais , Humanos , Camundongos , Derme/citologia , Derme/embriologia , Derme/metabolismo , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Ectoderma/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Células Epidérmicas/citologia , Células Epidérmicas/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Epitélio/embriologia , Fator de Transcrição GATA3 , Mesoderma/metabolismo , Mutação , Organoides , Transativadores , Fatores de Transcrição/metabolismo
6.
Int J Mol Sci ; 23(3)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35163066

RESUMO

Paclitaxel is a microtubule-stabilizing chemotherapeutic agent approved for the treatment of ovarian, non-small cell lung, head, neck, and breast cancers. Despite its beneficial effects on cancer and widespread use, paclitaxel also damages healthy tissues, including the skin. However, the mechanisms that drive these skin adverse events are not clearly understood. In the present study, we demonstrated, by using both primary epidermal keratinocytes (NHEK) and a 3D epidermis model, that paclitaxel impairs different cellular processes: paclitaxel increased the release of IL-1α, IL-6, and IL-8 inflammatory cytokines, produced reactive oxygen species (ROS) release and apoptosis, and reduced the endothelial tube formation in the dermal microvascular endothelial cells (HDMEC). Some of the mechanisms driving these adverse skin events in vitro are mediated by the activation of toll-like receptor 4 (TLR-4), which phosphorylate transcription of nuclear factor kappa B (NF-κb). This is the first study analyzing paclitaxel effects on healthy human epidermal cells with an epidermis 3D model, and will help in understanding paclitaxel's effects on the skin.


Assuntos
Citocinas/metabolismo , Epiderme/metabolismo , Queratinócitos/citologia , Paclitaxel/efeitos adversos , Espécies Reativas de Oxigênio/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Células 3T3 BALB , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Derme/citologia , Derme/efeitos dos fármacos , Derme/metabolismo , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Epiderme/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-1alfa/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Camundongos , NF-kappa B/metabolismo , Paclitaxel/farmacologia , Fosforilação/efeitos dos fármacos
7.
Int J Mol Sci ; 23(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35163388

RESUMO

Carnosine is an endogenous ß-alanyl-L-histidine dipeptide endowed with antioxidant and carbonyl scavenger properties, which is able to significantly prevent the visible signs of aging and photoaging. To investigate the mechanism of action of carnosine on human skin proteome, a 3D scaffold-free spheroid model of primary dermal fibroblasts from a 50-year-old donor was adopted in combination with quantitative proteomics for the first time. The label free proteomics approach based on high-resolution mass spectrometry, integrated with network analyses, provided a highly sensitive and selective method to describe the human dermis spheroid model during long-term culture and upon carnosine treatment. Overall, 2171 quantified proteins allowed the in-depth characterization of the 3D dermis phenotype during growth and differentiation, at 14 versus 7 days of culture. A total of 485 proteins were differentially regulated by carnosine at 7 days, an intermediate time of culture. Of the several modulated pathways, most are involved in mitochondrial functionality, such as oxidative phosphorylation, TCA cycle, extracellular matrix reorganization and apoptosis. In long-term culture, functional modules related to oxidative stress were upregulated, inducing the aging process of dermis spheroids, while carnosine treatment prevented this by the downregulation of the same functional modules. The application of quantitative proteomics, coupled to advanced and relevant in vitro scaffold free spheroids, represents a new concrete application for personalized therapies and a novel care approach.


Assuntos
Carnosina/farmacologia , Derme/metabolismo , Modelos Biológicos , Estresse Oxidativo/efeitos dos fármacos , Proteômica , Esferoides Celulares/metabolismo , Derme/citologia , Humanos , Pessoa de Meia-Idade , Esferoides Celulares/citologia
8.
Sci Rep ; 12(1): 2308, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35145162

RESUMO

Autologous cell replacement therapy for inherited metabolic disorders requires the correction of the underlying genetic mutation in patient's cells. An unexplored alternative for females affected from X-linked diseases is the clonal selection of cells randomly silencing the X-chromosome containing the mutant allele, without in vivo or ex vivo genome editing. In this report, we have isolated dermal fibroblasts from a female patient affected of ornithine transcarbamylase deficiency and obtained clones based on inactivation status of either maternally or paternally inherited X chromosome, followed by differentiation to hepatocytes. Hepatocyte-like cells derived from these clones display indistinct features characteristic of hepatocytes, but express either the mutant or wild type OTC allele depending on X-inactivation pattern. When clonally derived hepatocyte-like cells were transplanted into FRG® KO mice, they were able to colonize the liver and recapitulate OTC-dependent phenotype conditioned by X-chromosome inactivation pattern. This approach opens new strategies for cell therapy of X-linked metabolic diseases and experimental in vitro models for drug development for such diseases.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Hepatócitos , Doença da Deficiência de Ornitina Carbomoiltransferase/genética , Doença da Deficiência de Ornitina Carbomoiltransferase/terapia , Inativação do Cromossomo X/genética , Alelos , Animais , Diferenciação Celular , Células Cultivadas , Células Clonais , Derme/citologia , Feminino , Fibroblastos , Hepatócitos/transplante , Humanos , Camundongos Knockout , Mutação , Cromossomo X/genética
9.
Cells ; 11(2)2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-35053317

RESUMO

Recently, extracellular vesicle (EV)-mediated cell differentiation has gained attention in developmental biology due to genetic exchange between donor cells and recipient cells via transfer of mRNA and miRNA. EVs, also known as exosomes, play a role in maintaining paracrine cell communication and can induce cell proliferation and differentiation. However, it remains unclear whether adipose-derived stem cells (ASCs) can adopt dermal papilla (DP)-like properties with dermal papilla cell-derived extracellular vesicles (DPC-EVs). To understand the effect of DPC-EVs on cell differentiation, DPC-EVs were characterized and incubated with ASCs, of monolayer and spheroid cell cultures, in combination with the CAO1/2FP medium specialized for dermal papilla cells (DPCs). DPC-like properties in ASCs were initially evaluated by comparing several genes and proteins with those of DPCs via real-time PCR analysis and immunostaining, respectively. We also evaluated the presence of hair growth-related microRNAs (miRNAs), specifically mir-214-5P, mir-218-5p, and mir-195-5P. Here, we found that miRNA expression patterns varied in DPC-EVs from passage 4 (P4) or P5. In addition, DPC-EVs in combination with CAP1/2FP accelerated ASC proliferation at low concentrations and propagated hair inductive gene expression for versican (vcan), alpha-smooth muscle actin (α-sma), osteopontin (opn), and N-Cam (ncam). Comparison between the expression of hair inductive genes (vcan, α-sma, ctnb, and others), the protein VCAN, α-SMA and ß-Catenin (CTNB), and hair inductive miRNAs (mir-214-5P, mir-218-5p, and mir-195-5p) of DPC-EVs revealed similarities between P4 DPC-EVs-treated ASCs and DPCs. We concluded that early passage DPC-EVs, in combination with CAP1/2FP, enabled ASCs to transdifferentiate into DPC-like cells.


Assuntos
Tecido Adiposo/citologia , Derme/citologia , Vesículas Extracelulares/metabolismo , Regulação da Expressão Gênica , Cabelo/metabolismo , Células-Tronco/metabolismo , beta Catenina/metabolismo , Animais , Linhagem Celular , Proliferação de Células , Transdiferenciação Celular , Vesículas Extracelulares/ultraestrutura , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo
10.
J Virol ; 96(4): e0206821, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34908440

RESUMO

Herpes simplex virus 1 (HSV-1) invades its human host via the skin and mucosa and initiates infection in the epithelium. While human and murine epidermis are highly susceptible to HSV-1, we recently observed rare infected cells in the human dermis and only minor infection efficiency in murine dermis upon ex vivo infection. Here, we investigated why cells in the dermis are so inefficiently infected and explored potential differences between murine and human dermal fibroblasts. In principle, primary fibroblasts are highly susceptible to HSV-1; however, we found a delayed infection onset in human compared to murine cells. Intriguingly, only a minor delayed onset of infection was evident in collagen-embedded compared to unembedded human fibroblasts, although expression of the receptor nectin-1 dropped after collagen embedding. This finding is in contrast to previous observations with murine fibroblasts where collagen embedding delayed infection. The application of latex beads revealed limited penetration in the dermis, which was more pronounced in the human than in the murine dermis, supporting the species-specific differences already observed for HSV-1 invasion. Our results suggest that the distinct organization of human and murine dermis contributes to the presence and accessibility of the HSV-1 receptors as well as to the variable barrier function of the extracellular matrix. These contributions, in turn, give rise to inefficient viral access to cells in the dermis while dermal fibroblasts in culture are well infected. IMPORTANCE Dermal fibroblasts are exposed to HSV-1 upon invasion in skin during in vivo infection. Thus, fibroblasts represent a widely used experimental tool to understand virus-host cell interactions and are highly susceptible in culture. The spectrum of fibroblasts' characteristics in their in vivo environment, however, clearly differs from the observations under cell culture conditions, implying putative variations in virus-cell interactions. This becomes evident when ex vivo infection studies in murine as well as human dermis revealed the rather inefficient penetration of HSV-1 in the tissue and uptake in the dermal fibroblasts. Here, we initiated studies to explore the contributions of receptor presence and accessibility to efficient infection of dermal fibroblasts. Our results strengthen the heterogeneity of murine and human dermis and imply that the interplay between dermal barrier function and receptor presence determine how well HSV-1 penetrates the dermis.


Assuntos
Derme/virologia , Matriz Extracelular/metabolismo , Fibroblastos/virologia , Herpesvirus Humano 1/fisiologia , Animais , Colágeno/metabolismo , Derme/citologia , Derme/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Camundongos , Nectinas/metabolismo , Especificidade da Espécie , Internalização do Vírus
11.
Sci Rep ; 11(1): 24056, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34911993

RESUMO

Induction of new hair follicles (HFs) may be an ultimate treatment goal for alopecia; however, functional cells with HF inductivity must be expanded in bulk for clinical use. In vitro culture conditions are completely different from the in vivo microenvironment. Although fetal and postnatal dermal cells (DCs) have the potential to induce HFs, they rapidly lose this HF inductivity during culture, accompanied by a drastic change in gene expression. This suggests that epigenetic regulation may be involved. Of the various histone deacetylases (HDACs), Class I HDACs are noteworthy because they are ubiquitously expressed and have the strongest deacetylase activity. This study revealed that DCs from postnatal mice rapidly lose HF inductivity and that this reduction is accompanied by a significant decrease in histone H3 acetylation. However, MS-275, an inhibitor of class I HDACs, preserves HF inductivity in DCs during culture, increasing alkaline phosphatase activity and upregulating HF inductive genes such as BMP4, HEY1, and WIF1. In addition, the inhibition of class I HDACs activates the Wnt signaling pathway, the most well-described molecular pathway in HF development, via increased histone H3 acetylation within the promoter region of the Wnt transcription factor LEF1. Our results suggest that class I HDACs could be a potential target for the neogenesis of HFs.


Assuntos
Derme/citologia , Derme/fisiologia , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/fisiologia , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Acetilação , Animais , Biomarcadores , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Histonas/metabolismo , Fator 1 de Ligação ao Facilitador Linfoide/genética , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Camundongos , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Via de Sinalização Wnt
12.
PLoS One ; 16(12): e0260545, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34914725

RESUMO

Cellular senescence causes irreversible growth arrest of cells. Prolonged accumulation of senescent cells in tissues leads to increased detrimental effects due to senescence associated secretory phenotype (SASP). Recent findings suggest that elimination of senescent cells has a beneficial effect on organismal aging and lifespan. In this study, using a validated replicative senescent human dermal fibroblasts (HDFs) model, we showed that elimination of senescent cells is possible through the activation of an apoptotic mechanism. We have shown in this replicative senescence model, that cell senescence is associated with DNA damage and cell cycle arrest (p21, p53 markers). We have shown that Silybum marianum flower extract (SMFE) is a safe and selective senolytic agent targeting only senescent cells. The elimination of the cells is induced through the activation of apoptotic pathway confirmed by annexin V/propidium iodide and caspase-3/PARP staining. Moreover, SMFE suppresses the expression of SASP factors such as IL-6 and MMP-1 in senescent HDFs. In a co-culture model of senescent and young fibroblasts, we demonstrated that senescent cells impaired the proliferative capacities of young cells. Interestingly, when the co-culture is treated with SMFE, the cell proliferation rate of young cells is increased due to the decrease of the senescent burden. Moreover, we demonstrated in vitro that senescent fibroblasts trigger senescent process in normal keratinocytes through a paracrine effect. Indeed, the conditioned medium of senescent HDFs treated with SMFE reduced the level of senescence-associated beta-galactosidase (SA-ß-Gal), p16INK4A and SASP factors in keratinocytes compared with CM of senescent HDFs. These results indicate that SMFE can prevent premature aging due to senescence and even reprograms aged skin. Indeed, thanks to its senolytic and senomorphic properties SMFE is a candidate for anti-senescence strategies.


Assuntos
Senescência Celular/efeitos dos fármacos , Extratos Vegetais/farmacologia , /química , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Derme/citologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Flores/química , Flores/metabolismo , Humanos , Compostos Fitoquímicos/análise , Extratos Vegetais/química , Fenótipo Secretor Associado à Senescência/efeitos dos fármacos
13.
Nutrients ; 13(11)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34836359

RESUMO

Dermal fibroblasts provide structural support by producing collagen and other structural/support proteins beneath the epidermis. Fibroblasts also produce insulin-like growth factor-1 (IGF-1), which binds to the IGF-1 receptors (IGF-1Rs) on keratinocytes to activate signaling pathways that regulate cell proliferation and cellular responses to genotoxic stressors like ultraviolet B radiation. Our group has determined that the lack of IGF-1 expression due to fibroblast senescence in the dermis of geriatric individuals is correlated with an increased incidence of skin cancer. The present studies tested the hypothesis that pro-energetics creatine monohydrate (Cr) and nicotinamide (NAM) can protect normal dermal human fibroblasts (DHF) against experimentally induced senescence. To that end, we used an experimental model of senescence in which primary DHF are treated with hydrogen peroxide (H2O2) in vitro, with senescence measured by staining for beta-galactosidase activity, p21 protein expression, and senescence associated secretory phenotype cytokine mRNA levels. We also determined the effect of H2O2 on IGF-1 mRNA and protein expression. Our studies indicate that pretreatment with Cr or NAM protects DHF from the H2O2-induced cell senescence. Treatment with pro-energetics post-H2O2 had no effect. Moreover, these agents also inhibited reactive oxygen species generation from H2O2 treatment. These studies suggest a potential strategy for protecting fibroblasts in geriatric skin from undergoing stress-induced senescence, which may maintain IGF-1 levels and therefore limit carcinogenesis in epidermal keratinocytes.


Assuntos
Senescência Celular/efeitos dos fármacos , Creatina/farmacologia , Peróxido de Hidrogênio/efeitos adversos , Niacinamida/farmacologia , Oxidantes/efeitos adversos , Idoso , Derme/citologia , Fibroblastos/efeitos dos fármacos , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , RNA Mensageiro/metabolismo , Fenótipo Secretor Associado à Senescência , Envelhecimento da Pele/efeitos dos fármacos
14.
Int J Mol Sci ; 22(19)2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34639043

RESUMO

Studies have shown that bone marrow-derived mesenchymal stem cells (BMSCs) can differentiate into dermal fibroblasts to participate in skin-repairing. However, at present, little is known about how microgravity affects dermal fibroblastic differentiation of BMSCs in space. The aim of this study was to investigate the effect of simulated microgravity (SMG) on the differentiation of BMSCs into dermal fibroblasts and the related molecular mechanism. Here, using a 2D-clinostat device to simulate microgravity, we found that SMG inhibited the differentiation and suppressed the Wnt/ß-catenin signaling and phosphorylation of extracellular regulated protein kinases 1/2 (ERK1/2). After upregulating the Wnt/ß-catenin signaling with lithium chloride (LiCl) treatment, we found that the effect of the differentiation was restored. Moreover, the Wnt/ß-catenin signaling was upregulated when phosphorylation of ERK1/2 was activated with tert-Butylhydroquinone (tBHQ) treatment. Taken together, our findings suggest that SMG inhibits dermal fibroblastic differentiation of BMSCs by suppressing ERK/ß-catenin signaling pathway, inferring that ERK/ß-catenin signaling pathway may act as a potential intervention target for repairing skin injury under microgravity conditions.


Assuntos
Diferenciação Celular , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Ausência de Peso , beta Catenina/metabolismo , Animais , Derme/citologia , Modelos Biológicos , Roedores , Transdução de Sinais
15.
In Vitro Cell Dev Biol Anim ; 57(8): 795-807, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34647281

RESUMO

The main characteristic of skin aging is the change in the composition of the dermis, mainly resulting from fibroblast senescence. Mesenchymal stem cells derived from fetal dermis are defined as fetal dermal mesenchymal stem cells; they reportedly exert wound healing effects on the skin and regulate keloid fibroblast proliferation. D-Galactose is widely used in animal aging models. In this study, we confirmed that D-galactose inhibits adult dermal fibroblast proliferation, and the inhibitory effect gradually increased with increasing concentration. Finally, we chose a concentration of 40 g/L D-galactose to induce adult dermal fibroblast senescence. D-Galactose increased the intensity of senescence-associated ß-galactosidase staining and the levels of reactive oxygen species in adult dermal fibroblasts. Furthermore, D-galactose increased the mRNA expression of p16, p21, and p53. The fetal dermal mesenchymal stem cell-conditioned medium improved the above-mentioned effects. Overall, fetal dermal mesenchymal stem cells exerted anti-aging effects against adult dermal fibroblasts induced by D-galactose via paracrine functions.


Assuntos
Envelhecimento , Derme/embriologia , Fibroblastos/fisiologia , Células-Tronco Mesenquimais/fisiologia , Adulto , Envelhecimento/efeitos dos fármacos , Envelhecimento/fisiologia , Animais , Apoptose , Western Blotting , Senescência Celular/efeitos dos fármacos , Meios de Cultura , Derme/citologia , Fibroblastos/efeitos dos fármacos , Galactose/farmacologia , Humanos , Masculino , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
16.
Int J Mol Sci ; 22(20)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34681894

RESUMO

Regarding that the chronic use of commonly available non-steroidal and anti-inflammatory drugs (NSAIDs) is often restricted by their adverse effects, there is still a current need to search for and develop new, safe and effective anti-inflammatory agents. As a continuation of our previous work, we designed and synthesized a series of 18 novel N-substituted-1,2,4-triazole-based derivatives of pyrrolo[3,4-d]pyridazinone 4a-c-9a-c. The target compounds were afforded via a convenient way of synthesis, with good yields. The executed cell viability assay revealed that molecules 4a-7a, 9a, 4b-7b, 4c-7c do not exert a cytotoxic effect and were qualified for further investigations. According to the performed in vitro test, compounds 4a-7a, 9a, 4b, 7b, 4c show significant cyclooxygenase-2 (COX-2) inhibitory activity and a promising COX-2/COX-1 selectivity ratio. These findings are supported by a molecular docking study which demonstrates that new derivatives take position in the active site of COX-2 very similar to Meloxicam. Moreover, in the carried out in vitro evaluation within cells, the title molecules increase the viability of cells pre-incubated with the pro-inflammatory lipopolysaccharide and reduce the level of reactive oxygen and nitrogen species (RONS) in induced oxidative stress. The spectroscopic and molecular modeling study discloses that new compounds bind favorably to site II(m) of bovine serum albumin. Finally, we have also performed some in silico pharmacokinetic and drug-likeness predictions. Taking all of the results into consideration, the molecules belonging to series a (4a-7a, 9a) show the most promising biological profile.


Assuntos
Anti-Inflamatórios/farmacologia , Inibidores de Ciclo-Oxigenase/farmacologia , Derme/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Piridazinas/química , Pirróis/química , Triazóis/química , Anti-Inflamatórios/química , Sobrevivência Celular , Ciclo-Oxigenase 1/química , Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase/química , Derme/citologia , Derme/enzimologia , Desenho de Fármacos , Fibroblastos/citologia , Fibroblastos/enzimologia , Humanos , Técnicas In Vitro , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
17.
J Dermatol Sci ; 103(3): 167-175, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34420848

RESUMO

BACKGROUND: Previous studies suggested that the nuclear receptor peroxisome proliferator-activated receptor (PPAR)-δ plays an essential role in cellular responses against oxidative stress. OBJECTIVE: To investigate how PPAR-δ elicits cellular responses against oxidative stress in primary human dermal fibroblasts (HDFs) exposed to ultraviolet B (UVB). METHODS: The present study was undertaken in HDFs by performing real-time polymerase chain reaction, gene silencing, cytotoxicity and reporter gene assay, analyses for catalase and reactive oxygen species, and immunoblot analyses. RESULTS: The PPAR-δ activator GW501516 upregulated expression of catalase and this upregulation was attenuated by PPAR-δ-targeting siRNA. GW501516-activated PPAR-δ induced catalase promoter activity through a direct repeat 1 response element. Mutation of this response element completely abrogated transcriptional activation, indicating that this site is a novel type of PPAR-δ response element. In addition, GW501516-activated PPAR-δ counteracted the reductions in activity and expression of catalase induced by UVB irradiation. These recovery effects were significantly attenuated in the presence of PPAR-δ-targeting siRNA or the specific PPAR-δ antagonist GSK0660. GW501516-activated PPAR-δ also protected HDFs from cellular damage triggered by UVB irradiation, and this PPAR-δ-mediated reduction of cellular damage was reversed by the catalase inhibitor or catalase-targeting siRNA. These effects of catalase blockade were positively correlated with accumulation of reactive oxygen species in HDFs exposed to UVB. Furthermore, GW501516-activated PPAR-δ targeted peroxisomal hydrogen peroxide through catalase in UVB-irradiated HDFs. CONCLUSION: The gene encoding catalase is a target of PPAR-δ, and this novel catalase-mediated pathway plays a critical role in the cellular response elicited by PPAR-δ against oxidative stress.


Assuntos
Catalase/genética , Derme/efeitos da radiação , Fibroblastos/efeitos da radiação , PPAR delta/metabolismo , Raios Ultravioleta/efeitos adversos , Derme/citologia , Derme/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Estresse Oxidativo/efeitos da radiação , PPAR delta/agonistas , PPAR delta/genética , Peroxissomos/efeitos dos fármacos , Peroxissomos/metabolismo , Peroxissomos/efeitos da radiação , Cultura Primária de Células , Tiazóis , Regulação para Cima/efeitos dos fármacos
18.
Molecules ; 26(16)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34443686

RESUMO

Hyaluronic acid (HA) is a glycosaminoglycan very common in commercial products from pharmaceuticals to cosmetics due to its widespread distribution in humans and its diversified physico-chemical proprieties. Despite its extended use and preliminary evidence showing even also opposite activities to the native form, the precise cellular effects of HA at low-molecular-weight (LWM-HA) are currently unclear. The 'omics sciences currently in development offer a new and combined perspective on the cellular and organismal environment. This work aims to integrate lipidomics analyses to our previous quantitative proteomics one for a multi-omics vision of intra- and extra-cellular impact of different concentrations (0.125, 0.25, and 0.50%) of LMW-HA (20-50 kDa) on normal human dermal fibroblasts by LC-high resolution mass spectrometry (LC-HRMS). Untargeted lipidomics allowed us to identify 903 unique lipids mostly represented by triacylglycerols, ceramides, and phosphatidylcholines. According to proteomics analyses, LMW-HA 0.50% was the most effective concentration also in the lipidome rearrangement especially stimulating the synthesis of ceramides involved in skin hydration and reparation, cell signaling, and energy balance. Finally, integrative analyses showed 25 nodes covering several intra- and extra-cellular functions. The more complete comprehension of intra- and extra-cellular effects of LMW-HA here pointed out will be useful to further exploit its features and improve current formulations even though further studies on lipids biosynthesis and degradation are necessary.


Assuntos
Derme/citologia , Fibroblastos/metabolismo , Ácido Hialurônico/farmacologia , Metabolômica , Fibroblastos/efeitos dos fármacos , Humanos , Lipidômica , Peso Molecular , Análise de Componente Principal , Mapas de Interação de Proteínas/efeitos dos fármacos , Proteômica
19.
J Toxicol Environ Health A ; 84(24): 1020-1039, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34427174

RESUMO

Inter-species differences in toxicodynamics are often a critical source of uncertainty in safety evaluations and typically dealt with using default adjustment factors. In vitro studies that use cells from different species demonstrated some success for estimating the relationships between life span and/or body weight and sensitivity to cytotoxicity; however, no apparent investigation evaluated the utility of these models for risk assessment. It was hypothesized that an in vitro model using dermal fibroblasts derived from diverse species and individuals might be utilized to inform the extent of inter-species and inter-individual variability in toxicodynamics. To test this hypothesis and characterize both inter-species and inter-individual variability in cytotoxicity, concentration-response cytotoxicity screening of 40 chemicals in primary dermal fibroblasts from 68 individuals of 54 diverse species was conducted. Chemicals examined included drugs, environmental pollutants, and food/flavor/fragrance agents; most of these were previously assessed either in vivo or in vitro for inter-species or inter-individual variation. Species included humans, the typical preclinical species and representatives from other orders of mammals and birds. Data demonstrated that both inter-species and inter-individual components of variability contribute to the observed differences in sensitivity to cell death. Further, it was found that the magnitude of the observed inter-species and inter-individual differences was chemical-dependent. This study contributes to the paradigm shift in risk assessment from reliance on in vivo toxicity testing to higher-throughput in vitro or alternative approaches, extending the strategy to replace use of default adjustment factors with experimental characterization of toxicodynamic inter-individual variability and to also address toxicodynamic inter-species variability.


Assuntos
Modelos Biológicos , Testes de Toxicidade/métodos , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Derme/citologia , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Humanos , Cinética , Reprodutibilidade dos Testes , Medição de Risco , Especificidade da Espécie
20.
Biomed Res Int ; 2021: 1340281, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34336999

RESUMO

The purpose of this study was to develop an efficient vitrification system for cryopreservation of dog skin tissues as a source of stable autologous stem cells. In this study, we performed vitrification using four different cryoprotectants, namely, ethylene glycol (EG), dimethyl-sulfoxide (Me2SO), EG plus Me2SO, and EG plus Me2SO plus sucrose, and analyzed the behaviors of cells established from warmed tissues. Tissues vitrified with 15% EG, 15% Me2SO, and 0.5 M sucrose had a normal histological appearance and the highest cell viability after cell isolation, and thus, this cocktail of cryoprotectants was used in subsequent experiments. We evaluated proliferation and apoptosis of cells derived from fresh and vitrified tissues. These cells had a normal spindle-like morphology after homogenization through subculture. Dog dermal skin stem cells (dDSSCs) derived from fresh and vitrified tissues had similar proliferation capacities, and similar percentages of these cells were positive for mesenchymal stem cell markers at passage 3. The percentage of apoptotic cell did not differ between dDSSCs derived from fresh and vitrified tissues. Real-time PCR analysis revealed that dDSSCs at passage 3 derived from fresh and vitrified tissues had similar expression levels of pluripotency (OCT4, SOX2, and NANOG), proapoptotic (BAX), and antiapoptotic (BCL2 and BIRC5) genes. Both types of dDSSCs successfully differentiated into the mesenchymal lineage (adipocytes and osteocytes) under specific conditions, and their differentiation potentials did not significantly differ. Furthermore, the mitochondrial membrane potential of dDSSCs derived from vitrified tissues was comparable with that of dDSSCs derived from fresh tissues. We conclude that vitrification of dog skin tissues using cocktail solution in combination of 15% EG, 15% Me2SO, and 0.5 M sucrose allows efficient banking of these tissues for regenerative stem cell therapy and conservation of genetic resources.


Assuntos
Células-Tronco Mesenquimais/citologia , Pele/citologia , Vitrificação , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Apoptose/efeitos dos fármacos , Biomarcadores/metabolismo , Diferenciação Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Crioprotetores/farmacologia , Derme/citologia , Cães , Feminino , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...